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Abstract

Relative priorities in an n-class queueing system can reduce server and customer costs. This property is demonstrated in a single server
Markovian model where the goal is to minimize a non-linear cost function of class expected waiting times. Special attention is given to
minimizing server’s costs when the expected waiting time of each class is restricted.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Control of queueing systems to maximize profits or wel-
fare has been the subject of numerous papers. The common
methods are by setting adequate price and priority regimes
(see [11] for a survey of such models). In other cases, the
service provider also sets and advertises waiting time stan-
dards [1]. The common priority regime is that of (preemp-
tive or non-preemptive) absolute priorities, where the
customer classes are ranked and customers are called to
be served according to this order.

There is a voluminous literature analyzing and compar-
ing different priority disciplines, see for instance the survey
texts by Gelenbe and Mitrani [8] and Kleinrock [14]. A
notable generalization of this concept was offered by Fed-
ergruen and Groenevelt [7] who considered work conserv-
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ing priority rules. For each rule there corresponds a
performance vector giving the expected waiting time of each
customer class under the given rule. The performance space

consists of the collection of performance vectors achievable
by the available rules. Federgruen and Groenevelt showed
that the performance space is the convex hull of the points
corresponding to the regimes. Thus, each point in this poly-
hedron is achievable. However, the natural way of obtain-
ing a given point in the performance space is, for example,
by randomizing between a set of absolute priority rules,
assuming that the outcome of this randomization can be
hidden from the customers. The latter condition may often
be hard to implement.

For a linear objective function of the system, that
depends on the performance vector, there is an optimal
extreme point rule, in absolute priorities. For other func-
tions this is not true, and therefore it is of interest to iden-
tify technically feasible priority rules that optimize a
nonlinear objective over the performance space.

We consider an alternative approach, that of relative pri-

orities, where the priority given to a class also depends on
state variables associated with other classes. We demon-
strate several new possible uses of such regimes. In partic-
ular, we show that every point in the performance space

mailto:hassin@post.tau.ac.il
mailto:puerto@us.es
mailto:fernande@us.es


R. Hassin et al. / European Journal of Operational Research 193 (2009) 476–483 477
can be achieved by a suitable choice of relative priorities.
Thus, we offer a new method for optimizing nonlinear sys-
tem objective functions without the need to conceal from
the customers the details of the priority rule.

We consider a single server and several customers. Cus-
tomer i submits jobs to be processed by the server accord-
ing to a Poisson process with rate ki. The service rate is
exponential with mean 1=l. A function f ðW 1; . . . ;W nÞ
gives the cost incurred by the system when i-jobs have
expected waiting time of W i, i ¼ 1; . . . ; n. (By waiting time
we mean the time in the system including in service: often
called sojourn time.) We also consider a variation of this
model where the service rate is a decision variable, and
the cost function is extended to include the cost associated
with the chosen service rate. In both cases we give condi-
tions under which relative priorities reduce costs.

We elaborate on a special case of the above model, where
customer i requires that the expected time his jobs stay in
the system is bounded by a constant ti. The server is free
to choose the service rate l and a priority rule. The server
incurs a cost CðlÞ per unit of time if the chosen service rate
is l. The function C is monotone non-decreasing. We inves-
tigate the optimal choices to be made by the server, and
show that the server can profit by using relative priorities.

We consider the priority scheme called discriminatory

processor sharing (DPS). Under this model there exist non-
negative parameters xi 2 ð0; 1Þ,

Pn
i¼1xi ¼ 1 representing rel-

ative priority of customers of the classes. If ni customers are
present in the system, i ¼ 1; . . . ; n, an i-customer receives a
fraction xi

Pn
i¼1nixi

� ��1
of the service capacity. In particu-

lar, the total capacity dedicated to class-i is
nixi

Pn
i¼1nixi

� ��1
. Of course, the limit case when xi ! 1

means that the class i obtains absolute priority.
The DPS discipline is used in several queueing models in

the computer science and communication literature. In
these cases firms cater to multiple customer classes or mar-
ket segments with the help of shared service facilities or pro-
cesses, so as to exploit pooling benefits. Different customer
classes typically have rather disparate sensitivities to the
delays encountered. Conversely, from the firm’s perspective
it is vital to offer differentiated levels of service to different
customer classes so as to maximize (long run) profits. In
many service industries, waiting time standards are used
as a primary advertised competitive instrument. For exam-
ple, most major electronic brokerage firms, (e.g., Ameri-
trade, Fidelity, E-trade) prominently feature the average
or median execution speed per transaction which is moni-
tored by independent firms. Thus, in order to improve wait-
ing time standards often firms segment their costumers in
classes and some firms go as far as to provide an individual
execution time score card as part of the customer’s personal
account statements [2,3,13,14,17,18].

Clearly, DPS gives more options than can be achieved
by absolute priorities, and one may claim that it is expected
that by applying DPS a server should be able to achieve
better performance or profit than otherwise. However, at
least in one notable case this assumption turns to be false.
Hassin and Haviv [12] considered two customer classes and
a single server who sets both prices and relative priority.
They observed that it follows from Mendelson and Whang
[15] that when the server is not restricted in choosing these
variables, there exists an optimal solution with absolute
priorities and thus the application of DPS does not
improve the welfare achieved by the system. However, they
also showed that if the server is restricted to a given set of
prices, or if the server must set a common price to both
classes, then relative priorities may be used to increase
profits. Thus, it is a question of interest to identify other
settings where the use of relative priorities can be helpful.

In Section 2 we analyze how to reduce system costs by
using DPS as opposed to the use of absolute priorities.
We give conditions that ensure, for a given cost function,
when DPS outperforms FCFS. Section 3 considers a model
where each class fixes its aspiration level on the waiting
time and the problem is to ensure these levels at a minimum
service rate. (Here the customers are those who set the
waiting time standards, and the firm adapt itself to mini-
mize its costs, whereas in [1] the standards are decision
variables set by the firm to maximize its profits.) We pro-
vide explicit forms for the service rate requirements under
different priority regimes: FCFS, absolute preemptive pri-
orities and DPS. The main results proved in this section
are: (1) a comparison of service rate requirement under dif-
ferent priority regimes; (2) a general result that character-
izes the existence of a DPS policy satisfying given
aspiration levels for any number of classes; (3) for n ¼ 2
and any given aspiration levels t1; t2, we explicitly deter-
mine the optimal priority parameters minimizing the ser-
vice rate under DPS; (4) we show that for n ¼ 2, using
DPS improves the service rate regarding the service rate
under FCFS, whenever t1–t2.

2. Optimizing the cost of the system using DPS

Let xi denote the relative priority given to the ith class.
The problem is

min
x2Sn

f ðW 1; . . . ;W nÞ; ð1Þ

where f is a monotone nondecreasing function of its argu-
ments and Sn ¼ fx 2 Rn :

Pn
i¼1xi ¼ 1; xi P 0; 8ig. Note

that although x does not appear explicitly in the function
to be minimized the expected waiting times W i,
i ¼ 1; . . . ; n depends on the relative priority xi given to
the ith class. At times, when it is necessary to understand
the problem, we will make explicit the dependence of the
expected waiting times on the different parameters.

2.1. The achievable waiting times

To investigate qualitative properties of this problem we
proceed to obtain the functional dependence of W i; i ¼
1; . . . ; n. A mixing priority discipline consists of multiplexing
a finite set of priority disciplines in such a way that each of
them will operate during a desired percentage of time.
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Denote by PðNÞ the set of permutations of the finite set
N ¼ f1; . . . ; ng. Take p 2 PðNÞ to be an ordering of the n

classes. Here, pðiÞ represents the position which has been
assigned to class i. The smaller the position index, the
higher the priority associated to the class. We denote by
W p

i the expected waiting time in the system for class i under
p. It is well-known (see, for instance [10]) that for
l > k :¼

Pn
i¼1ki, the value for a M=M=1 system is:

W p
i ¼

l

l�
P

j:pðjÞ<pðiÞkj

� �
l�

P
j:pðjÞ6pðiÞkj

� � :
We denote by W p the vector whose coordinates are given
by W p

i , i ¼ 1; . . . ; n and

FðNÞ ¼ convfW p 2 Rn : p 2 PðNÞg:
The following theorem states a geometrical characteriza-
tion of the performance space by the family of DPS policies
when the number of classes is at least three (n > 2).

Theorem 2.1. The performance space achievable by the

family of DPS policies coincides with the relative interior of

FðNÞ. This set is contained in a hyperplane of Rn.
Proof. It is known (see [6, Theorem 2]) that the entire set of
performance waiting time vectors that are achievable by
some scheduling strategy coincides with FðNÞ.4 Moreover,
according to [16, Theorem 3], DPS policies are almost com-
plete with respect to the waiting time vectors of scheduling
strategies:5 This implies that the performance space achiev-
able by DPS policies is FðNÞ without its boundary.

Since DPS strategies are work conserving and do not use
advance information about individual service times, their
achievable waiting times fulfill Kleinrock’s conservation law:Xn

i¼1

qiW i ¼
1

1� q

Xn

k¼1

kk

l2
; ð2Þ

where qi ¼ ki=l and q ¼ k=l. Hence, any achievable wait-
ing time vector by DPS policies must be included in the
hyperplane defined by this law. h

The above result describes the geometry of the perfor-
mance space for n > 2. The case n ¼ 2 is slightly simpler
since this is the unique case where the extreme preemptive
strategies ð1; 2Þ and ð2; 1Þ6 coincide with DPS policies ð1; 0Þ
and ð0; 1Þ7, respectively. Hence, the performance space
achievable by DPS policies coincide with Fðf1; 2gÞ.
4 A scheduling strategy is the specification of the order in which the
customers are served, with the only restriction that sequencing decisions
are not based on advanced knowledge of remaining service times.

5 A family of policies W is almost complete for a given set of
performance vectors H whenever HW, the set of performance vectors
achievable by policies in W, satisfies that HW equals H without its
boundary.

6 The standard notation for preemptive strategies specifies the permu-
tation which gives the preemption sequence on the different classes. Thus,
ð2; 1Þ means that any job of class 2 will be completed before any job of
class 1.

7 The notation for DPS policies gives in the ith coordinate the relative
probability assigned to class i.
For the case of two priority classes, after some algebra,
the expression (2) results in:

AW 1 þ BW 2 � D ¼ 0;

where A ¼ k1ðl� kÞ, B ¼ k2ðl� kÞ, and D ¼ k.
The bounds on W 1 and W 2 are obtained by setting

x1 ¼ 0; 1. The performance space, for a given l, is given
in Corollary 2.2 and illustrated in Fig. 1.

Corollary 2.2. For any fixed l, the performance space is a
segment in the plane ðW 1;W 2Þ with extreme points

½LOðlÞ;UPðlÞ�, where

LOðlÞ ¼ 1

l� k1

;
l

ðl� kÞðl� k1Þ

� �
; k < l < þ1;

and

UPðlÞ ¼ l
ðl� kÞðl� k2Þ

;
1

l� k2

� �
; k < l < þ1:

Computing the performance space for a given DPS pol-
icy is in general a hard problem. To date, there exists a
closed formula only for the case of two priority classes.
The following result is due to Fayolle et al. [9]. Let
k ¼ k1 þ k2 and K ¼ k1x1 þ k2x2, then

W i ¼
1

l� k
l� kxi

l� K
; i ¼ 1; 2: ð3Þ

It is of interest to compare the waiting times under DPS
with W FCFS ¼ 1

l�k obtained under the First-Come First-
Served (FCFS) discipline. Inserting x1 ¼ 1

2
in (3) we obtain

that K ¼ k and W 1 ¼ W 2 ¼ W FCFS. Therefore, the best
result obtained under DPS is at least as good as that
obtained under FCFS. The point ðW 1;W 2Þ ¼
ðW FCFS;W FCFSÞ is marked in Fig. 1.

2.2. Optimal DPS policies

Using the characterization in Theorem 2.1 for n > 2,
Problem (1) can be rewritten as
Fig. 1. The performance space for n ¼ 2.
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min f ðW 1; . . . ;W nÞ
s:t: X

p2PðNÞ
ap ¼ 1;

W i �
X

p2PðNÞ
apW p

i ¼ 0; i ¼ 1; . . . ; n;

ap P 0; 8p 2 PðnÞ:

ð4Þ

For the Markovian M=M=1 system any feasible solution
of (4) must satisfy Kleinrock’s conservation law (2). The
linear dependence in (2) implies that any feasible solution
of (4) can be represented by at most n out of the n! a-coef-
ficients. Moreover, any solution that lies in the relative
boundary of FðNÞ can be represented by at most ðn� 1Þ
non-null a-coefficients. These relative boundary points can-
not be properly achieved by DPS policies. (But they can be
arbitrarily approximated up to any given accuracy.)

In the case of two priority classes we can give a more
accurate answer. If the optimum in Problem (1) is not
attained at the extreme points of the interval then there
exists a DPS policy that outperforms the absolute priori-
ties. Therefore natural candidates to have optimal solu-
tions in DPS policies are convex cost functions (and
certainly concave functions never give optimal solutions
in relative priorities).

Some interesting particular instances of the above result
are given below.

1. If f ðW 1;W 2Þ ¼ C1W 1 þ C2W 2 then there is always an
optimal solution in absolute priorities. In addition, only
if C1

C2
¼ A

B there also exist solutions in non absolute prior-
ities. In fact in this case any x1 2 ½0; 1� is an optimal solu-
tion. (See [14] to find classical examples of linear
objective functions in the control of queues.)

2. Suppose that f ðW 1;W 2Þ ¼ maxfC1W 1;C2W 2g, Ci > 0,
i ¼ 1; 2. Usage of this objective function is justified when
the server compensates users according to worst case
performance, as for instance in emergency systems.
Then:
(a) If C1

C2
P 1

1�q then the unique optimal solution is
x1 ¼ 1.

(b) If C1

C2
6 1� q then the unique optimal solution is

x1 ¼ 0.
(c) If 1� q < C1

C2
< 1

1�q then there is a unique optimal
solution at some x1 2 ð0; 1Þ. This value of x1 solves
the following two equations: AW 1 þ BW 2 ¼ D and
C1W 1 ¼ C2W 2.
μ=10

μ=5

μ=4

0

0.5
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1.5W2
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W1

Fig. 2. W 1 and W 2 as a function of l for k1 ¼ 1 and k2 ¼ 2.
2.3. The problem with variable l

Once we have analyzed the optimization problem with
fixed l we focus on the problem with variable l. With
two priority classes, the problem is

min
x12½0;1�

k<l<þ1

f ðl;W 1;W 2Þ:
Fig. 2 represents the domain of ðW 1;W 2Þ for different
values of l. In particular the two curves are the geometrical
loci of the extreme points of the segments ½LOðlÞ;UPðlÞ�
as a function of l from l ¼ 3:5; . . . ; 10.

Are relative priorities also worth using if l is a decision
variable in the problem? The answer depends on the form
of the cost function to be considered. A way to test the bet-
ter performance of DPS is to check that its behavior out-
performs the one in absolute priorities for any feasible l
value. Of course this is only a sufficient condition. Never-
theless, this argument can be applied in particular for
f ðl;W 1;W 2Þ ¼ CðlÞ þmaxfC1W 1;C2W 2g. For this cost
function we always have that if

1� q <
C1

C2

<
1

1� q
; 8l;

then the optimal solution must be in non absolute priorities
since it is the case for any l. In particular, this condition
always holds when C1 ¼ C2. Therefore, DPS is worth
using.
3. The aspiration problem: Minimizing the service rate

The goal of this section is to minimize the necessary ser-
vice rate to ensure given aspiration levels ti, i ¼ 1; . . . ; n on
the waiting times (of the different classes). Since improving
service rate is not cost free, our goal induces a trade-off that
should be solved up to optimality.

We assume that parameters ti, i ¼ 1; . . . ; n are given.
Therefore, this induces the following cost function
f ðW 1; . . . ;W nÞ ¼ 0 if and only if W i 6 ti, for all
i ¼ 1; . . . ; n. Otherwise f ðW 1; . . . ;W nÞ ¼ 1. Clearly f is
convex. Our goal is to compare service rate requirements
under different priority regimes: FCFS, absolute preemp-
tive priorities, and DPS.

Suppose first that the queue discipline is FCFS. The sys-
tem’s requirement is now 1

l�k 6 minfti : i ¼ 1; . . . ; ng, and
the minimum service rate that satisfies these requirements is

lFCFS ¼ kþ 1

maxfti : i ¼ 1; . . . ; ng : ð5Þ
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To characterize the optimal service rate if we use abso-
lute preemptive priorities, denote ai

p ¼
P

j:pðjÞ<pðiÞkj and
bi

p ¼
P

j:pðjÞ6pðiÞkj for i ¼ 1; . . . ; n, p 2 PðnÞ. In this case
we look for the smallest l >

Pn
i¼1ki that satisfies, for some

permutation p, the following set of inequalities:

l

ðl� ai
pÞðl� bi

pÞ
6 ti; 8i ¼ 1; . . . ; n:

For a given i, the condition is equivalent to
l2 � l ai

p þ bi
p þ 1

ti

� �
þ ai

pbi
p P 0, which, since we also

require l P
Pn

i¼1ki, gives

l P ri
p ¼

1

2
ai

p þ bi
p þ

1

ti
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ai

p þ bi
p þ

1

ti

� �2

� 4ai
pbi

p

s8<
:

9=
;:

The minimum service rate that can be achieved with
absolute preemptive priorities is

lPR ¼ min
p2PðNÞ

max
16i6n

ri
p: ð6Þ
3.1. The aspiration problem with relative priorities

Let lDPS denote the minimum value of the service rate
that satisfies a given aspiration level vector
T ¼ ðt1; . . . ; tnÞ > 0 using DPS. For a given service rate l
and a permutation p 2 PðNÞ let W l;p

i denote the expected
waiting time of class i given the absolute priority regime
p. By Theorem 2.1, lDPS is the infimum value of l, greater
than

Pn
i¼1ki, for which there exists a nonnegative vector

a ¼ ðapÞ such thatX
p2PðNÞ

ap ¼ 1 and
X

p2PðNÞ
apW l;p

i 6 ti; i ¼ 1; . . . ; n: ð7Þ

For any given value of l this is a linear set of constraints
on the a variables. Consequently, if the system (7) has a
solution then it has one with at most nþ 1 positive values
of ap:

The optimal value lDPS is the unique solution to the fol-
lowing problem.

min l ð8Þ

s:t:
X

p2PðNÞ

apl

ðl� ai
pÞðl� bi

pÞ
6 ti; i ¼ 1; . . . ; n; ð9Þ

Xn

i¼1

ki 6 l;

X
p2PðNÞ

ap ¼ 1;

ap P 0; 8p 2 PðNÞ:

It is assumed that the data fai
pg, fbi

pg, ftig are rational,
where each rational data item is represented as a ratio of
two integers. Let M denote the maximum of the absolute
values of all integers in this representation.

The constraints of the problem are algebraic functions
defined over the rationals. For i ¼ 1; . . . ; n, the ith con-
straint can be converted to a polynomial in the variables
l and fapg by multiplying (9) by

Q
p½ðl� ai

pÞðl� bi
pÞ�.

It follows from [4] and the references cited therein that
there is an algebraic optimal solution, lDPS, fa�pg. In partic-
ular, there is a minimal univariate characteristic polyno-
mial, say P ðzÞ, with integer data, such that P ðlDPSÞ ¼ 0:
More specifically, from the nature of the above constraints,
the degree of P ðzÞ is bounded above by f ðnÞ ¼ 2nðn!Þ, and
the absolute value of each one of its integer coefficients is
bounded above by ðn!ÞM2nðn!Þ.

For each real l, testing whether lDPS 6 l or lDPS > l
requires the solution of a set of nþ 1 linear constraint in
the n! nonnegative variables fapg. If l is rational with inte-
ger numerator and denominator bounded above by N,
solving such a linear program can be done in
Qðn!; log M ; log NÞ time, where Q is polynomial.

With the above machinery, using the results in [4,5], we
conclude with the following:

Theorem 3.1 [19]. There is a bivariate polynomial function

Gðx; yÞ, such that the time to find the characteristic polyno-

mial P ðzÞ of lDPS, and a rational interval ½a; b�, such that

lDPS is the unique root of PðzÞ in this interval, is bounded by

Gðn!; log MÞ.
Theorem 3.1 finds an interval ½a; b� containing lDPS.
The optimal value lDPS can be located by any search

algorithm for the root of P ðzÞ in ½a; b� (for example, New-
ton’s method).

Once the solution lDPS is found we have to check
whether it is attainable by DPS policies or not. This
depends on the number of non-null a�p variables in the opti-
mal solution of Problem (8). (There are at most nþ 1.)
Recall that lDPS is attainable by DPS policies if W belongs
to the relative interior of FðNÞ.

Comparing the service rates requirements under the dif-
ferent priority regimes, simply consists of comparing the
values obtained by (5), (6) and Theorem 3.1.

3.2. Two classes

Consider now the case of n ¼ 2 customer classes. Sup-
pose the server implements a DPS with x1; x2 ¼ 1� x1.
The service rate should be large enough to satisfy the
requirements W i 6 ti, i ¼ 1; 2. Consider first i ¼ 1. By (3),
the requirement amounts to

l� kx1 6 ðl� kÞðl� KÞt1;

and of course l > k. (Recall that k ¼ k1 þ k2 and
K ¼ k1x1 þ k2x2.) Equivalently,

t1l
2 � ½t1ðKþ kÞ þ 1�lþ kðt1Kþ x1ÞP 0:

Let

D1 ¼ t2
1ðKþ kÞ2 þ 1þ 2t1ðKþ kÞ � 4t1kðt1Kþ x1Þ

¼ ½t1ðK� kÞ þ 1�2 þ 4t1kx2:
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The condition is now

l P l1 ¼
t1ðKþ kÞ þ 1þ

ffiffiffiffiffi
D1

p

2t1

¼ Kþ k
2
þ 1þ

ffiffiffiffiffi
D1

p

2t1

: ð10Þ

Similarly, the condition W 2 6 t2 amounts to

l P l2 ¼
Kþ k

2
þ 1þ

ffiffiffiffiffi
D2

p

2t2

; ð11Þ

where D2 ¼ ½t2ðK� kÞ þ 1�2 þ 4t2kx1. We note that D1 (D2)
are functions of x1 although we do not write explicitly this
dependence in its definition to simplify notation.

To satisfy both requirements, the server chooses a rate
l ¼ maxfl1; l2g.

Clearly, l1 is a decreasing function of x1, and l2 is an
increasing function of x1. Therefore, the best priority
parameter is that which satisfies l1 ¼ l2.

Fig. 3 (left) illustrates the solution for some values of the
parameters. The graphs shown give l as a function of the
priority parameter x1. The part of the function to the left
of the minimum is l1 and it decreases when customer 1
obtains higher priority. Similarly, the part to the right of
the minimum gives l2 which increases when customer 1
obtains higher priority and thus customer 2 obtains lower
priority. The optimal service rate is obtained at the point
where l1 ¼ l2. In this figure we see that a decrease in t1,
which amounts to higher standards required by customer
1, leads to a solution with a higher l and x1. Of course this
result is expected. Similarly, in Fig. 3 (right) we see that an
increase in k1 leads to increased value of l, and in this
example it is coupled with a decrease in the priority allo-
cated to this customer.

We also conclude from Fig. 3 that lDPS < lPR is possi-
ble, that is, using relative priorities, it may be possible to
reduce the service rate relative to the best result that can
be obtained by any permutation of absolute priorities. This
conclusion results from the observation that the two abso-
lute priority regimes that are possible in our example are
represented by the values of the graphs at the extreme
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Fig. 3. Required service ra
points x ¼ 0 and x ¼ 1. However, we see that a lower ser-
vice rate is possible if we use intermediate priority values.

As noted above, the minimum value of the system
requirement under DPS is achieved when l ¼ l1 ¼ l2. This
condition applied to (10) and (11) results in:

1þ
ffiffiffiffiffi
D1

p

t1

¼ 1þ
ffiffiffiffiffi
D2

p

t2

: ð12Þ

After some algebra (manipulate equation (12)) multiply-
ing both sides by t2, putting the 1 to the left side, raising to
the power 2, and substituting D2 ¼ ½t2ðK� kÞ þ 1�2þ
4t2kx1, condition (12) turns out to be:

t2
2 1þ

ffiffiffiffiffi
D1

ph i2

� ðK� kÞ2t2
1

� �

� 2t2t1 1þ
ffiffiffiffiffi
D1

p
þ ðK� kÞt1 þ 2kx1t1

� �
¼ 0:

Since t2–0, the unique non-null root of the above equation
is

t2 ¼ 2t1

1þ
ffiffiffiffiffi
D1

p
þ ðK� kÞt1 þ 2kx1t1

1þ
ffiffiffiffiffi
D1

p� �2 � ðK� kÞ2t2
1

: ð13Þ
Lemma 3.2. The function

/ðx1Þ ¼ 2t1

1þ
ffiffiffiffiffi
D1

p
þ ðK� kÞt1 þ 2kx1t1

1þ
ffiffiffiffiffi
D1

p� �2 � ðK� kÞ2t2
1

; ð14Þ

is continuous and increasing.

Proof. Let w1ðx1Þ ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
D1ðx1Þ

p
þ Kðx1Þ � kð1� 2x1Þ and

w2ðx1Þ ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
D1ðx1Þ

p
þ Kðx1Þ þ kð1� 2x1Þ. (Notice that

we have chosen in D1 the appropriate root so that /ðx1Þ
goes to infinity when x1 goes to 1.) Clearly, /ðx1Þ ¼ w1ðx1Þ

w2ðx1Þ
for any x1 2 ½0; 1Þ and its derivative /0ðx1Þ is positive.
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Indeed, /0ðx1Þ¼ 2kt2
1 2� x1þk1t1ð3�2x1Þþk2t1ð5�4x1Þþ½

k2
1t2

1ð1 � x1Þ þ k1k2t2
1 þ ð1 � k2t1Þ2x1 þ ð2 þ kt1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
D1ðx1Þ

p
�

D1ðx1Þ�1=2 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
D1ðx1Þ

p
�ðK�kÞ2t2

1

� ��2

> 0, since all the
terms in the numerator are non-negative and some of them
are strictly positive. On the other hand, 0</ð0Þ< 1 and
limx1!1�/ðx1Þ¼þ1. Thus, / is continuous, increasing
monotone in the interval ½0;1Þ. h

Our next result gives the optimal priority value that
ensures the aspiration levels and minimizes the service rate.

Corollary 3.3. For any fixed value t1 > 0 the optimal priority

parameter x�1, as a function of t2, is:
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x�1 ¼ /�1ðt2Þ:

Proof. The above properties (increasing monotonicity and
continuity) of the function / ensure that it has a proper
inverse function and therefore the optimal priority param-
eter x�1 can be computed by

x�1 ¼ /�1ðt2Þ: �

Fig. 4 shows x�1 as a function of t2. It assumes t1 ¼ 1,
k1 ¼ 5 and three values of k2. We note that the result is
not very sensitive to the value of k2. Also note that when
t2 !1 we naturally have x1 ! 1, and that x1 ¼ 0 is
obtained for positive values of t2. The latter property is
illustrated in the right part of Fig. 4 which is a magnified
section of the left part. Note that for t1 ¼ t2, x�1 ¼ 0:5 even
when k1–k2. With t2 > t1 we have that x�1 is monotone
increasing with k2, and the opposite holds when t2 < t1.
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Fig. 5. Minimal DPS and FCFS service requirements.
3.3. Comparing the disciplines

The rest of this section is devoted to comparing the
required minimal service rate under the optimal DPS prior-
ity parameter, lDPSðx�1Þ, with the same rate under FCFS,
lFCFS.
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Theorem 3.4. For t2 ¼ t1, the minimal service rate required is

the same for DPS and FCFS, but for t2–t1 there is a priority

parameter x�1 that guarantees lDPSðx�1Þ < lFCFS.

Proof. With x1 ¼ 1
2
,
ffiffiffiffiffi
D1

p
¼ 1þ t1

k
2

giving that the required
service rate is

lDPS

1

2

� �
¼ 3

4
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i¼1;2

2þ ti
k
2

2ti

	 

¼ kþmax

i¼1;2

1

ti

� �
¼ lFCFS;

where lFCFS is given in (5).
On the other hand, t2 ¼ / 1

2

� �
if and only if t2 ¼ t1

(substituting x1 ¼ 1
2 in (14) gives t1 ¼ t2). This means that if

t1–t2 then (12) is not satisfied for x1 ¼ 1
2, meaning that it is

not optimal and there is another value for x1 that gives a
strictly smaller value for l. Since x1 ¼ 1

2 gives the FCFS
value we conclude the proof. h

The minimal service rate requirements for DPS and
FCFS are illustrated in Fig. 5. This figure assumes that t1
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is fixed at 1 whereas t2 varies. The FCFS requirement is
determined by the minimum of t1 and t2 and therefore it
is constant for t2 P 1. We see that the two curves intersect
when t2 ¼ t1, but for any other value of t2 selecting the right
DPS parameter allows us to reduce the service rate – as
proved in Theorem 3.4.

4. Concluding remarks

Theorem 2.1 extends further to the case of G=M=1 sys-
tems because a work conservation law for the long-run
expected amount of work in the system exists (see e.g.
[7,14]). However, since no explicit formulas are known
for the remaining elements in our analysis (e.g. W p

i ) in
G=M=1 queues, the extension to that model, although
meaningful, is currently an open question.
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